Asymptotic Notation
Lecture 2



Topic: Problem of the Day




Problem of the Day

The knapsack problem 1s as follows: given a set of integers
S={s 1Sy---,%, and a given target number T, find a
subset of S which adds up exactly to T. For example, within
S={1,2, 5,9, 10there is a subset which addsup to T = 22
but not T = 23.

Find counterexamples to each of the following algorithms for
the knapsack problem. That is, givean S and T such that
the subset is selected using the algorithm does not leave the
knapsack completely full, even though such a solution exists.



Solution

« Put the elements of S in the knapsack in left to right order
if they fit, 1.e. the first-fit algorithm?

« Put the elements of S in the knapsack from smallest to
largest, 1.e. the best-fit algorithm?

e Put the elements of S in the knapsack from largest to
smallest?



Questions?



Topic: Algorithmic Time Complexity




The RAM Model of Computation

Algorithms are an important and durable part of computer
science because they can be studied in a machine/language
independent way.

This 1s because we use the RAM model of computation for
all our analysis.

 Each “simple” operation (+, -, =, if, call) takes 1 step.

* Loops and subroutine calls are not  simple operations.
They depend upon the size of the data and the contents
of a subroutine. “Sort” 1s not a single step operation.



« Each memory access takes exactly 1 step.

We measure the run time of an algorithm by counting the
number of steps.

This model 1s useful and accurate in the same sense as the
flat-earth model (which is useful)!



Worst-Case Complexity

The worst case complexity of an algorithm is the function
defined by the maximum number  of steps taken on any
instance of size 1.
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Best-Case and Average-Case Complexity

The best case complexity of an algorithm 1s the function
defined by the  minimum number of steps taken on any
instance of size 1.

The average-case complexity of the algorithm is the function
defined by an average number of steps taken on any instance
of size N,

Each of these complexities defines a numerical function: time
vs. size!



Our Position on Complexity Analysis

What would the reasoning be on buying a lottery ticket on the
basis of best, worst, and average-case complexity?

Generally speaking, we will use the worst-case complexity as
our preferred measure of algorithm efficiency.

Worst-case analysis 1s generally easy to do,  and “usually”
reflects the average case.  Assume [ am asking for worst-
case analysis unless otherwise specified!

Randomized algorithms are of growing importance, and
require an average-case type analysis to show off their merits.



Questions?



Topic: The Big Oh Notation




Exact Analysis is Hard!

Best, worst, and average case are difficult  to deal with
because the precise function details are very complicated:

ftn)
upper bound

n,
%ﬂ

It easier to talk about upper and lower bounds of the function.
Asymptotic notation (O, ©, Q) are as well as we can
practically deal with complexity functions.




Names of Bounding Functions

* g(n) = O(f (n)) means C x f(n) is an upper bound on
a(n).
* g(n) = Q(f (n)) means C xf(n) is a lower bound ong(n).

« g(n) = O(f (n)) means C; x f(n) is an upper bound on
g(n) and C, x f (n) is a lower bound on g(n).

C, C,, and C; are all constants independent of 1.
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The definitions imply a constant g beyond which they are
satisfied. We do not care about small values of 1.



Formal Definitions

« f(n) = O(g(n)) ifthere are positive constants My and C
such that to the right of 1, the value of f (n) always lies
on or below ¢ - g(n)

« f(n) = Q(g(n)) if there are positive constants /g and C
such that to the right of Ny, the value of f (n) always lies
on or above € - g(n)

« f(n) = ©(g(n)) if there exist positive constants/y, €4, and
C, such that to the right off, the value off (n) always lies
between C; - g(n) and G, - g(n) inclusive.



Questions?



Topic: Working with the Big Oh




Big Oh Examples

3r* — 100n + 6 = O(n ?) because 3h>3n%-100n + 6
3% — 100n + 6 = O(n °) because .0Th> 3n?-100n + 6
3% — 100n + 6 6 O(n) because ¢ - n < 3rf whenn>c

Think of the equality as meaning in the set of functions.



Big Omega Examples

3% — 100n + 6 = Q(n %) because 2.9%x 3n?-100n + 6
3% — 100n + 6 6= Q(17) because 3h— 100n + 6 < n°
3 — 100n + 6 = Q(n) because 18° 'n <3n2 - 100n + 6



Big Theta Examples

3n* — 100n + 6 = O(n ) because O and Q
3% — 100n + 6 6= O(17) because O only
3% — 100n + 6 6= O(n) because Q only



Big Oh Addition/Subtraction

Suppose f (n) = O(n ?) and g(n) = O(n ?).

» What do we know aboutd{n) = f (n) + g(n) ? Adding the
bounding constants shows oy (n) = O(n ?).

« What do we know about &’ fn) =f(n) —|g(n)| ? Since
the bounding constants don’t necessary cancel, ¢ ?n) =

O(n?)

We know nothing about the lower bounds on ¢ and g%
because we know nothing about lower bounds on f and g.



Questions?
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